< 返回新闻公告列表

Pytorch全连接层实现的方法及过程是什么?

发布时间:2023-1-17 15:43:37    来源: 纵横云

这篇文章主要介绍“Pytorch全连接层实现的方法及过程是什么”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pytorch全连接层实现的方法及过程是什么”文章能帮助大家解决问题。

全连接神经网络(FC)

全连接神经网络是一种最基本的神经网络结构,英文为Full Connection,所以一般简称FC。

FC的准则很简单:神经网络中除输入层之外的每个节点都和上一层的所有节点有连接。

以上一次的MNIST为例

import torch

import torch.utils.data

from torch import optim

from torchvision import datasets

from torchvision.transforms import transforms

import torch.nn.functional as F

batch_size = 200

learning_rate = 0.001

epochs = 20

train_loader = torch.utils.data.DataLoader(

datasets.MNIST('mnistdata', train=True, download=False,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=batch_size, shuffle=True)

test_loader = torch.utils.data.DataLoader(

datasets.MNIST('mnistdata', train=False, download=False,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=batch_size, shuffle=True)

w1, b1 = torch.randn(200, 784, requires_grad=True), torch.zeros(200, requires_grad=True)

w2, b2 = torch.randn(200, 200, requires_grad=True), torch.zeros(200, requires_grad=True)

w3, b3 = torch.randn(10, 200, requires_grad=True), torch.zeros(10, requires_grad=True)

torch.nn.init.kaiming_normal_(w1)

torch.nn.init.kaiming_normal_(w2)

torch.nn.init.kaiming_normal_(w3)

def forward(x):

x = x@w1.t() + b1

x = F.relu(x)

x = x@w2.t() + b2

x = F.relu(x)

x = x@w3.t() + b3

x = F.relu(x)

return x

optimizer = optim.Adam([w1, b1, w2, b2, w3, b3], lr=learning_rate)

criteon = torch.nn.CrossEntropyLoss()

for epoch in range(epochs):

for batch_idx, (data, target) in enumerate(train_loader):

data = data.view(-1, 28*28)

logits = forward(data)

loss = criteon(logits, target)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if batch_idx % 100 == 0:

print('Train Epoch : {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx*len(data), len(train_loader.dataset),

100.*batch_idx/len(train_loader), loss.item()

))

test_loss = 0

correct = 0

for data, target in test_loader:

data = data.view(-1, 28*28)

logits = forward(data)

test_loss += criteon(logits, target).item()

pred = logits.data.max(1)[1]

correct += pred.eq(target.data).sum()

test_loss /= len(test_loader.dataset)

print('\nTest set : Averge loss: {:.4f}, Accurancy: {}/{}({:.3f}%)'.format(

test_loss, correct, len(test_loader.dataset),

100.*correct/len(test_loader.dataset)

))

我们将每个w和b都进行了定义,并且自己写了一个forward函数。如果我们采用了全连接层,那么整个代码也会更加简介明了。

首先,我们定义自己的网络结构的类:

class MLP(nn.Module):

def __init__(self):

super(MLP, self).__init__()

self.model = nn.Sequential(

nn.Linear(784, 200),

nn.LeakyReLU(inplace=True),

nn.Linear(200, 200),

nn.LeakyReLU(inplace=True),

nn.Linear(200, 10),

nn.LeakyReLU(inplace=True)

)

def forward(self, x):

x = self.model(x)

return x

它继承于nn.Moudle,并且自己定义里整个网络结构。

其中inplace的作用是直接复用存储空间,减少新开辟存储空间。

除此之外,它可以直接进行运算,不需要手动定义参数和写出运算语句,更加简便。

同时我们还可以发现,它自动完成了初试化,不需要像之前一样再手动写一个初始化了。

区分nn.Relu和F.relu()

前者是一个类的接口,后者是一个函数式接口。

前者都是大写的,并且调用的的时候需要先实例化才能使用,而后者是小写的可以直接使用。

最重要的是后者的自由度更高,更适合做一些自己定义的操作。

完整代码

import torch

import torch.utils.data

from torch import optim, nn

from torchvision import datasets

from torchvision.transforms import transforms

import torch.nn.functional as F

batch_size = 200

learning_rate = 0.001

epochs = 20

train_loader = torch.utils.data.DataLoader(

datasets.MNIST('mnistdata', train=True, download=False,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=batch_size, shuffle=True)

test_loader = torch.utils.data.DataLoader(

datasets.MNIST('mnistdata', train=False, download=False,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=batch_size, shuffle=True)

class MLP(nn.Module):

def __init__(self):

super(MLP, self).__init__()

self.model = nn.Sequential(

nn.Linear(784, 200),

nn.LeakyReLU(inplace=True),

nn.Linear(200, 200),

nn.LeakyReLU(inplace=True),

nn.Linear(200, 10),

nn.LeakyReLU(inplace=True)

)

def forward(self, x):

x = self.model(x)

return x

device = torch.device('cuda:0')

net = MLP().to(device)

optimizer = optim.Adam(net.parameters(), lr=learning_rate)

criteon = nn.CrossEntropyLoss().to(device)

for epoch in range(epochs):

for batch_idx, (data, target) in enumerate(train_loader):

data = data.view(-1, 28*28)

data, target = data.to(device), target.to(device)

logits = net(data)

loss = criteon(logits, target)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if batch_idx % 100 == 0:

print('Train Epoch : {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx*len(data), len(train_loader.dataset),

100.*batch_idx/len(train_loader), loss.item()

))

test_loss = 0

correct = 0

for data, target in test_loader:

data = data.view(-1, 28*28)

data, target = data.to(device), target.to(device)

logits = net(data)

test_loss += criteon(logits, target).item()

pred = logits.data.max(1)[1]

correct += pred.eq(target.data).sum()

test_loss /= len(test_loader.dataset)

print('\nTest set : Averge loss: {:.4f}, Accurancy: {}/{}({:.3f}%)'.format(

test_loss, correct, len(test_loader.dataset),

100.*correct/len(test_loader.dataset)

))

补充:pytorch 实现一个隐层的全连接神经网络

torch.nn 实现 模型的定义,网络层的定义,损失函数的定义。

import torch

# N is batch size; D_in is input dimension;

# H is hidden dimension; D_out is output dimension.

N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs

x = torch.randn(N, D_in)

y = torch.randn(N, D_out)

# Use the nn package to define our model as a sequence of layers. nn.Sequential

# is a Module which contains other Modules, and applies them in sequence to

# produce its output. Each Linear Module computes output from input using a

# linear function, and holds internal Tensors for its weight and bias.

model = torch.nn.Sequential(

torch.nn.Linear(D_in, H),

torch.nn.ReLU(),

torch.nn.Linear(H, D_out),

)

# The nn package also contains definitions of popular loss functions; in this

# case we will use Mean Squared Error (MSE) as our loss function.

loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-4

for t in range(500):

# Forward pass: compute predicted y by passing x to the model. Module objects

# override the __call__ operator so you can call them like functions. When

# doing so you pass a Tensor of input data to the Module and it produces

# a Tensor of output data.

y_pred = model(x)

# Compute and print loss. We pass Tensors containing the predicted and true

# values of y, and the loss function returns a Tensor containing the

# loss.

loss = loss_fn(y_pred, y)

print(t, loss.item())

# Zero the gradients before running the backward pass.

model.zero_grad()

# Backward pass: compute gradient of the loss with respect to all the learnable

# parameters of the model. Internally, the parameters of each Module are stored

# in Tensors with requires_grad=True, so this call will compute gradients for

# all learnable parameters in the model.

loss.backward()

# Update the weights using gradient descent. Each parameter is a Tensor, so

# we can access its gradients like we did before.

with torch.no_grad():

for param in model.parameters():

param -= learning_rate * param.grad

上面,我们使用parem= -= learning_rate* param.grad 手动更新参数。

使用torch.optim 自动优化参数。optim这个package提供了各种不同的模型优化方法,包括SGD+momentum, RMSProp, Adam等等。

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for t in range(500):

y_pred = model(x)

loss = loss_fn(y_pred, y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

到此这篇关于“Pytorch全连接层实现的方法及过程是什么”的文章就介绍到这了

19906048601
19906048601 19906048601
返回顶部
返回顶部 返回顶部